

Guide to Dual Flight Operations:

Vaisala RS92-NGP Preparation and Performance

Data Continuity Study Sterling Field Support Center

Vaisala RS92-NGP Preparation and Performance

• This familiarization is designed for observers who have taken the RRS certification test.

Covered Topics:

- RRS System Initialization
- Radiosonde Preparation and Handling
- Baselining and GPS lock
- -Launching the Radiosonde
- Quality controlling after release
- Editing the Coded Messages

- Archiving
- Capture
- Controlling the TRS Antenna
- Multiple Releases
- RRS Helpline Function

Vaisala RS92-NGP

- 1 = GPS Antenna
- 2 = Battery Housing
- 3 = Vaisala Radiosonde RS92-NGP
- 4 = Antenna, mailing bag inside
- 5 = Temperature Sensor
- 6 = Humidity Sensor
- 7 = Sensor Boom
- 8 = FSD25 Interface
- 9 = Additional Sensor Interface

Total Weight of Vaisala RS92-NGP: 305 grams

RRS System Initialization

- Start RWS and allow TRS to warm-up
 - Allow at least 30 minutes prior to baseline
 - TRS Warm-up is dependent on ambient temperatures, but generally lasts between 10-30 minutes
 - Initialization takes approximately 1 minute
 - SPS requires ~15 minutes to establish the GPS almanac
 - The TRS Status Line on the Antenna Orientation Display will indicate "TRS is ready" when warm-up and initialization is complete

RRS System Initialization

- Prepare the TRS for baseline
 - Orientate the TRS Azimuth and Elevation towards the baseline location
 - Tune the TRS to the desired radiosonde frequency

Setting the frequency

Orientating TRS
Azimuth and
Elevation

Radiosonde Preparation and Handling

- Carefully unpack the radiosonde and inspect for damage
- Record Serial Numbers
- Place on the Frequency Setting
 Device (FSD) to set the frequency
 and burn off contaminants
 - Plug connector into radiosonde
 - Turn on FSD power
 - Select frequency channel

CH1= 1676 MHz CH2= 1678 MHz CH3= 1680 MHz CH4=1682 MHZ

Radiosonde Preparation and Handling

- Plug in the battery connector and attach the battery pack
 - A click will indicate the radiosonde edges are sealed
- Carefully clip the sensor boom into place
- Plug in the transmitter into the bottom of the radiosonde between the FSD25 and Additional Sensor Interfaces
- Note the lifting device

- Prior to Baselining
 - Ensure the TRS is orientated to the baseline position, tuned to the correct frequency, and that the AFC is ON
- Baseline Position
 - Radiosonde should be placed on a radiosonde stand or suspended from above
 - Do not place radiosonde on a solid surface as this may result in poor performance
 - Place under or near the GPS repeater (repeater must be powered on)
 - Observer MUST wait at least 5 minutes before accepting baseline. Time
 is needed for the sensors to stabilize and for a proper sensor correction to
 be calculated
 - Failure to do so will result in a required termination
- A minimum of 4 satellite matches are required for GPS lock

Vaisala RS92-NGP on Radiosonde Stand

Vaisala RS92-NGP suspended from above

- If there is no GPS during baseline (Ref: RRS User's Guide)
 - Verify Signal Strength and Antenna Position
 - Verify that the correct amount of time has passed
 - Reset the radiosonde
 - Carefully open the plastic casing and disconnect the battery
 - Reset the SPS via the Hardware Manager Status Display
 - Reset the UPS power via the Hardware Manager Status Display
 - This may require the TRS to warm-up and complete initialization processes again

Allow at least 15 minutes for GPS almanac to rebuild after performing an UPS or SPS reset

- If the pressure discrepancy is within ±3 hPa, accept baseline
 - "Waiting for Release" will then be displayed on the RWS screen

- For additional information and assistance
 - FAQs Website
 - http://ops13web.nws.noaa.gov/rrd/
 - RRS Helpline
 - (703) 661-1268

Take a Break..

Launching the Radiosonde

- Position the TRS before proceeding to the release site
 - Manual Track Mode
 - Direct Azimuth and Elevation to where the radiosonde is expected to travel (downwind)
- After release, utilize the remote Control Display Unit (CDU) to track the radiosonde
 - Wide Angle Gathering System (100 °)
 - Narrow Angle Gathering System (15°)

0x0800 Errors

Quality Control After Release

- Ensure the TRS is tracking appropriately and that signal strength is acceptable
 - Place the Antenna into the Move to GPS mode only if GPS is available
 - Selecting Move to GPS when GPS is not available may cause the software to freeze
 - Monitor the Status Messages for any tracking notifications
- Update the Surface Observation and release time as necessary
 - For release time, check the first pressure data point below the red line in the Received PTU Tabular Display
 - Should have a pressure less than or equal to the release pressure shown in the Surface Observation
 - Check the Geopotential Height and ensure it increases with time
 - Verify the Cloud/Weather observation and ensure it's accurate at release

Temperature Correction

- Temperature correction added to raw temperature
 - Red is the correction for the solar angle with no clouds
 - Blue is the correction for the solar angle with a cloud deck at 8 km

Quality Control After Release

Wet-bulb Effect

- Marking & Editing Data
 - Verify data continuity from the surface into flight
 - Dry RH bias just off the surface
 - Common data quality problems requiring attention
 - "Wet-bulb effect"
 - Noisy RH data
 - Super-adiabatic lapse rates
 - During flight, periodically check for anomalous data
 - Plots
 - Check Messages

Editing Coded Messages

- Once the Coded Messages are generated, review plots, Check Messages and Tabular data prior to transmission
 - If changes to the flight data are made, Coded Messages will need to be recoded
 - Edits made in the Processed Tabular Display
- Do not edit the body of the Coded Messages unless absolutely necessary
 - Necessary edits include:
 - Adding appropriate 101 groups
 - Adding appropriate Icing comments to RADAT
 - Editing the message body will not affect the processed data
 - Edits to the message body are not saved to the NCDC Archive file

Quality Control After Release

When the flight has terminated, verify termination time and reason

Take a Break..

Transmitting an Archived Flight

- In Utilities, select NCDC Archive Utilities
 - Select the flight to Archive
 - Select "Build Archives and send to NCDC"
 - Individual log files for each office can be found here:
 - www1.ncdc.noaa.gov/pub/data/ua/RRS/2008/

2. NCDC Archive Utility

1. Tools → Utilities

3. Build Archives and send to NCDC

RWS Capture Program

- Captures the flight data and associated logs
 - Sends flight data and logs to WSH
 - Software and RRS performance analysis
 - First 30 days
 - Run Capture after each flight
 - After the first 30 days
 - Run Capture for flights that have problems or pose concerns
- Select icon located on the desktop
 - Select the most recent release & ascension number from a pull down menu
 - Click Capture
 - Flight data and logs are then sent to WSH

Controlling the TRS Antenna

Remote Control Display Unit (RCDU)

Az:284.57° Err:026> El:007.29° Err:018° F :1678.34 SIG:-102 Ant:Man RX :Man

Second and Third Releases

- Leave UPS(TRS) ON after the first release
- Place the TRS in Manual
- Set the new radiosonde to a different frequency
- Set the TRS to the new frequency
 - Don't Scan as this could cause the TRS to lock onto the previous radiosonde
- Move TRS back to the baseline position
- After a successful flight, select the active release to Archive

NWS Sterling Field Support Center RRS Helpline

- ❖ The RRS Helpline does not supersede your local or regional policies, procedures or regulations.
- ❖ Problems identified to be outside of the scope of the RRS Helpline will be escalated to the appropriate personnel.
- Issues affecting successful launches take priority.

Hours of Operation

M-F

10:00-02:00 UTC

No Holidays

Contact

(703) 661-1268

(703) 661-1293